

Topic : Mathematical Tools

DPP No. 5

Total Marks : 29

Max. Time : 31 min.

(D) 2 m/s, 8 m/s²

Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.4 [12, 12] (3 marks, 3 min.) Subjective Questions ('-1' negative marking) Q.5 to Q. 6 (4 marks, 5 min.) [8, 10] Comprehension ('-1' negative marking) Q.7 to Q.9 (3 marks, 3 min.) [9, 9] 1. Maximum value of $f(x) = \sin x + \cos x$ is : (C) $\frac{1}{\sqrt{2}}$ (D) $\sqrt{2}$ (A) 1 (B) 2 2. The displacement of a body at any time t after starting is given by $s = 15t - 0.4t^2$. The velocity of the body will be 7 ms⁻¹ after time : (A) 20 s (C) 10 s (D) 5 s (B) 15 s 3. For the previous question, the acceleration of the particle at any time t is : $(A) - 0.8 \text{ m/s}^2$ (B) 0.8 m/s² $(C) - 0.6 \text{ m/s}^2$ (D) 0.5 m/s² A particle is moving in a straight line. Its displacement at time t is given by s (in m) = $-4t^2 + 2t$, then 4. its velocity and acceleration at time t = $\frac{1}{2}$ second are

5. A stone thrown upwards from ground level, has its equation of height $h = 490 t - 4.9 t^2$ where 'h' is in metres and t is in seconds respectively. What is the maximum height reached by it ?

(C) -2 m/s, 8 m/s^2

6. If $\int (x+1) dy$

(A) $-2 \text{ m/s}, -8 \text{ m/s}^2$ (B) $2 \text{ m/s}, 6 \text{ m/s}^2$

COMPREHENSION

If a man has a velocity varying with time given as $v = 3t^2$, v is in m/s and t in sec then :

CLICK HERE

>>>

7.	Find out the velocity of the man after 3 sec.							
	(A) 18 m/s	(B) 9 m/s	(C) 27 m/s	(D) 36 m/s				
8.	Find out his disp (A) 10 m	lacement after 2 second (B) 6 m	ls of his start : (C) 12 m	(D) 8 m				
9.	Find out his acce	eleration after 3 seconds	· ·					
•	(A) 9 m/s ²	(B) 18 m/s ²	(C) 12 m/s ²	(D) 6 m/s ²				

Answers Key

DPP NO. - 5

1.	(D)	2.	(C)	3.	(A)	4.	(A)
5.	12250) m		6.	4x ³ +	6x ² +	С
7.	(C)	8.	(D)	9.	(B)		

Hint & Solutions

1

DPP NO. - 5

$y = f(x) = \sin x + \cos x$
$\frac{dy}{dx} = \cos x - \sin x$
$\frac{dy}{dx} = 0$, sin x = cos x, tan x =
x = 45° y = sin 45° + cos 45°
$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$
$=\frac{2}{\sqrt{2}}=\sqrt{2}$
er : $fx = \sqrt{2} \sin(x + \frac{\pi}{4})$
$f(x)_{max} = \sqrt{2}$
(C*) 10 s
$\frac{ds}{dt}$ = 15 - 0.8 t = 7 = v
; $8 = 0.8 t$; $t = 10$ second.
$a = \frac{d^2s}{dt^2} = -0.8 \text{ m/s}^2$

Get More Learning Materials Here : 💻

5.
$$\frac{ds}{dt} = 490 - 9.8 t = 0$$
 $t = \frac{490}{9.8} = 50$ second.
 $S_{max} = 490 \times 50 - 4.9 \times 2500 = 12250 m$
6. $dy = 12xdx \int (x+1)(12x)dx = 4x^3 + 6x^2 + C$
7. $v = 3t^2$
 $v = 3(3)^2 = 27 m/s$
8. $\int_{0}^{s} dS = \int_{0}^{2} 3t^2 dt$
 $S = [t^3]_{0}^{2} = 8$
9. $f = \frac{dv}{dt} = 6t$
 $f = 6 \times 3 = 18 m/s^2$

Get More Learning Materials Here : 📕

